COMPUTER VISION

We consider the problem of providing dense segmentation masks for object discovery in videos. We formulate the object discovery problem as foreground motion clustering, where the goal is to cluster foreground pixels in videos into different objects. We introduce a novel pixel-trajectory recur- rent neural network that learns feature embeddings of fore- ground pixel trajectories linked across time. By clustering the pixel trajectories using the learned feature embeddings, our method establishes correspondences between foreground object masks across video frames. To demonstrate the effec- tiveness of our framework for object discovery, we conduct experiments on commonly used datasets for motion segmen- tation, where we achieve state-of-the-art performance..

In this paper, we propose Spatio-TEmporal Progressive (STEP) action detector—a progressive learning framework for spatio-temporal action detection in videos. Starting from a handful of coarse-scale proposal cuboids, our approach progressively refines the proposals towards actions over a few steps. In this way, high-quality proposals (i.e., adhere to action movements) can be gradually obtained at later steps by leveraging the regression outputs from previous steps. At each step, we adaptively extend the proposals in time to incorporate more related temporal context. Compared to the prior work that performs action detection in one run, our progressive learning framework is able to naturally handle the spatial displacement within action tubes and therefore provides a more effective way for spatio-temporal modeling. We extensively evaluate our approach on UCF101 and AVA, and demonstrate superior detection results. Remarkably, we achieve mAP of 75.0% and 18.6% on the two datasets with 3 progressive steps and using respectively only 11 and 34 initial proposals.

Computer vision is an interdisciplinary scientific field that deals with how computers can be made to gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do.

ID Tilte Download
1 Lecture 1. Deep Learning By Fei Fei Li Introduction Download